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Approximations for Weakly Nonlinear Evolution Equations 

By Milan Miklav?i? 

Abstract. Convergence of approximations for a large class of weakly nonlinear parabolic 
and hyperbolic equations is proven. The main emphasis is on proving convergence of 
finite element and spectral Galerkin approximations of solutions to the weakly nonlinear 
wave equation 

u"(t) + Au(t) = F(t, u(t), u'(t)), u(0) = xo, u'(0) = yo, 

under minimal assumptions on the linear operator A and on the approximation spaces. 
A can be a very general elliptic operator (not just of 2nd order and not necessarily in a 
bounded domain); A can also be very singular and degenerate. The results apply also 
to systems of equations. Verification of the hypotheses is completely elementary for a 
large class of problems. 

1. Overview. Approximations of solutions to initial value problems of the form 

(1) u'(t) + Au(t) = F(t, u), u(O) = xo, 

are studied. The basic results, in rather abstract form, are presented in Section 
2. They can be used to prove convergence of finite difference, finite element, spec- 
tral, etc., approximations of weakly nonlinear hyperbolic and parabolic equations. 
Throughout the paper it is assumed that the nonlinear operator F is Lipschitz 
continuous in u, and for this reason, (1) is said to be weakly nonlinear (-A is the 
generator of a strongly continuous semigroup). The approach used to prove these 
results has origins in works of Kato [17], Trotter [29], Segal [27]. 

Section 3 contains a version of the results of Section 2 that is suitable for proving 
convergence of finite element approximations of solutions to the weakly nonlinear 
wave equation 

u"(t) + Au(t) = F(t, u(t), u'(t)), u(O) = xo, u'(O) = yo 

(Theorem 3.5) and to weakly nonlinear parabolic problems (Theorem 3.3). Theo- 
rem 3.5 is new. The main emphasis is on requiring as little as possible on the linear 
operator A and on the approximation spaces. A can be a very general elliptic op- 
erator (not just of 2nd order and not necessarily in a bounded domain); A can also 
be very singular and degenerate. 

Theorem 4.2 of Section 4 is perhaps the most interesting new result. It is a 
consequence of Theorem 3.5 and of the remarkable fact that sectorial operators 
have Friedrichs extensions. By using the Friedrichs extension one can bypass the 
"energy space" that is used in variational methods and this makes it possible to 
state the assumptions of Theorem 4.2 in a form that can be verified in a completely 
elementary way for a very general wave equation. 
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2. Basic Results. The following collection of hypotheses will be often used: 
H1: X, XI, X2,... are Banach spaces; either all of them are real or all of them 

are complex vector spaces; all norms will be denoted by 11 * II 
H2: Pn E R(X, Xn), p E [0, oo) are such that IIPnx(( < plixil for x E X, n > 1. 
H3: Qn E (Xn, X), q E [0, xc) are such that IIQnxjI < qilxll for x E Xn, n > 1. 
H4: PnQnX = x for x E Xn, n > 1. 
H5: An E 6(Xn), En(t) -exp(-Ant), M E [0, oo), a E R are such that 

IIEn(t)II < Me-at for t > 0, n > 1. 

H6: A is a densely defined linear operator in X. 
H7: A0 E (-oo, a) is such that A0 is in the resolvent set of A, and for every x in 

a dense subset of X we have that 

lim IIQn(An - Ao)-'Pnx - (A - Ao)-1x = 0. 
n -oo 

If Y and Z are Banach spaces, then R (Y, Z) denotes the collection of all bounded 
linear operators with domain Y and range in Z; ?W (Y) = (Y, Y). Note that A is 
closed by H7. The assumption that the domain of A is dense can be a consequence 
of other assumptions [18]. 

Theorems similar to the following one can be found in [29], [17], [19], [10], [25], 
and they can be used to prove convergence of many different types of numerical ap- 
proximations. In the proof of the theorem, ideas of Kato and Trotter are used [17, 
pp. 504-505]. The assumption that the An are bounded is not needed in the follow- 
ing theorem; however, it is needed in all subsequent theorems. For discretization 
in time, see [15], [4], [17], [29], [25]. 

2.1. THEOREM. Assume H1 through H7. Then, -A is the generator of a 
strongly continuous semigroup E(t), t > 0, and 

(a) IIE(t)II < pqMe-at for t > 0; 
(b) limn-oo jjQn (An-A)-'Pnx-(A- A)-1xIj = O for every x e X, A E (-c, a); 
(c) limn_ oo supt>o ebtIIQnEn(t)Pnx - E(t)xII = 0 for every x e X, b E (-oo, a). 

Proof. Abbreviate Rn(A) = (An- A)-', R(A) = (A - A)-'. H5 implies [25, p. 
20] 

(l) IIRn(A)mII < M(a -A)-m for A < a, m > 1, n > 1 

This implies that limnnoo QnR(Ao)Pnx = R(Ao)x for every x in X. 
If A < a, A E p(A) (- resolvent set of A), then for all n > 1 we have that 

Qn Rn(A)Pn - R(A) 
= (1 + (A - o)QnRn(A)Pn)(QnRn(o)Pn -R(Ao))(A - Ao)R(A); 

therefore, 

(2) if A E (-oo, a) np(A) then lim QnRn(A)Pnx = R(A)x for x E X. 
n-~oo 

(2) and (1) imply that 

(3) if A E (-oo, a) n p(A) then I(R(A)tI < pqM(a - A)-' 
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If ,u e (-oo,a) and [u 0 p(A), then IIR(A)Il should approach +oo as A goes from 
A0 to ,u; however, by (3) this is not possible. Therefore, (-oo, a) c p(A) and (2) 
implies (b). 

Induction on m gives 

lim (IQnRn(A)m'Px - R(A)mx(I = 0 for x E X, m > 1, A < a. 

This and (1) imply that 

(IR(A)mII < pqM(a -A)-m for A < a, m> 1. 

Therefore, there exists a strongly continuous semigroup E(t) t > 0, whose genera- 
tor is -A; moreover, the bound in (a) of the theorem holds [25, p. 20]. 

To complete the proof, we have to show (c). This will be done in the following 
series of steps. Choose A < a, b < a, x E X. Since 

d 
dEn(t - s)Rn(A)PnE(s)R(A)x = En(t - s)Pn(R(A) - QnRn(A)Pn)E(s)x, 

we have that 

ebSIIQnRn(A)(PnE(t) - En(t)Pn)R(A)xjj 

- j|| eb(t.-8)Q En(t - s)Pn(R(A) - QnRn(A)Pn)ebsE(s)x ds 

? pqM JI(R(A) -QnRn(A)Pn)ebE(s)xII ds 

and the dominated convergence theorem (DCT) implies that 

(4) lim sup ebt ((QnRn (A)(PnE(t) - En(t)Pn)R(A)xll = 0. 
n-oo t>0 

Note that 

ebt(QnRn(A)PnE(t) -E(t)R(A))R(A)x 

= (QnRn(A) Pn -R(A))ebtE(t)R(A)x 

= (QnRn (A) Pn -R(A))R(A)x 
rt 

+ j (QnRn(A)Pn - R(A))ebsE(s) (b - A)R(A)xds. 

Hence, the DCT and (4) imply that 

(5) lim sup ebt 11 (E(t)R(A) - QnRn (A)En (t)Pn)R(A)xll = 0. 
n-oo t>O 

Since 
QnRn(A)En(t)PnR(A)x - QnEn(t)PnR(A)2x 

= QnEn (t)Pn (QnRn (A)Pn-R(A))R(A)x, 

we see that (5) implies 

lim sup ebtll(E(t) - QnEn(t)Pn)R(A)2x(j = 0. 
n-?? t>O 

We are done because the range of R(A)2 is equal to ?2T(A2), which is dense in X 

[25, p. 6]. o 
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2.2. THEOREM. Let E(t), t > 0, be a strongly continuous semigroup on a 
Banach space X, and let -A be its generator. Suppose T E (0, xc), F: [01, T] x X 
X is continuous and that for some L E [0, oo) we have that 

(IF(t, x) - F(t, y)(( < Llix - yll for t e [0, T], x E X, y E X. 

Then, for every y E X there exists a unique x E C([0, T], X) such that 
ot 

(1) x(t) = E(t)y + f E(t - s)F(s, x(s)) ds for t E [0, T]; 

moreover, if A E i (X), then this x is the unique element of Cl([0, T], X) which 
satisfies 

(2) x(O) = y and x'(t) + Ax(t) = F(t, x(t)) for t E [0, T]. 

The function x E C([O, T], X) which satisfies (1) is said to be a mild solution 
of (2). Existence and uniqueness of a mild solution follows from the fixed point 
theorem; see for example [25, p. 184] or [27]. Under various additional assumptions 
[25], [17], [14], [11], [23] one can show that the mild solution actually satisfies (2); 
in particular, when A E ~4 (X), this can be easily shown. For a connection between 
mild solutions and weak solutions, see [2]. Local versions of the theorem can be 
found in [10], [25], and they lead, as in [24], to local versions of the following 
theorem. See also [3]. 

2.3. THEOREM. Assume Hi through H7. Let E(t), t > 0, be the strongly 
continuous semigroup whose generator is -A. Suppose T E (0, oc), F: [0, T] x X 
X is continuous and that for some L E [0, oo) we have that 

IIF(t,x) - F(t,y)l( < Llx - yll for t E [0,T], x E X, y E X. 

Choose any y E X. Then, for each n > 1 there exists a unique xn E Cl ([0, T], Xn) 
such that 

xn(O) = Pny and x4(t) +Anxn(t) = PnF(t,Qnxn(t)) fortE [O,T]. 

Moreover, 
lim sup ||x(t)-Qnxn(t)(( = 0, 

n-boo O<t<T 

where x e C([O, T], X) satisfies 
rt 

x(t) = E(t)y + J E(t - s)F(s, x(s)) ds for t E [0, T]. 

Proof. Existence and uniqueness of xn is given in Theorem 2.2, which also implies 
that for t E [0,T], n > 1, we have that 

Qnxn(t) = QnEn(t)PnY + QnEn(t - s)PnF(s, Qnxn(s)) ds. 

This implies that for t E [0, T], n > 1, we have that 

x(t) - Qnxn(t) = E(t)y - QnEn(t)PnY 
rt 

+ f(E(t - s) - QnEn(t - s)Pn)F(s, x(s)) ds 

+ t 
+ /Qn En(t -s) Pn (F (s x(s)) - F(s, Qn xn (s))) ds. 
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Define 

rn (t) = ||X(t) -QnXn (t) ||, 

En = SUp IIE(t)y - QnEn(t)PnYII, C = pqM(l + eaT), 
O<t<T 

dn(s) = sup II(E(t)-QnEn(t)Pn)F(s,x(s))II ? 2CIIF(s,x(s))I 
O<t<T 

and note that limn1oo En = 0 by Theorem 2.1, limn1,00 fT dn(s) ds = 0 by Theorem 
2.1 and the DCT. Since 

T t 

rn(t) < En + dn (s) ds + LC rn(s) ds for t E [0,T], n > 1, 

Gronwall's lemma implies that for t E [0, T], n > 1, we have that 

rn(t) < (En + 1 dn(s) ds) eLCT. 

This completes the proof. 5 

3. Applications to Variational Problems. In this section a linear operator 
A will be obtained from the variational theory, and the results of Section 2 will 
then be applied to approximate solutions of the corresponding "parabolic" problem 
(u'+Au = F(., u)) and of the corresponding "wave" equation (u"+Au = F(., u, u')). 
The following assumptions appear in the linear variational theory [1], [7], [8], [9], 

[17], [21], [24]. 
Vl: 9' is a complex Hilbert space with inner product (,.) and the corresponding 

norm 11 11 

V2: 9 is a dense subspace of ff; moreover, 9 is a Hilbert space with inner 
product [,.] and norm . There exists M1 E (0, oo) such that 

lxii < Miixi for all x E . 

V3: j: 9 x 9- C is a sesquilinear form, and there exist M2, M3 in (0, oo) 
and a E R such that 

13(x, y) I < M2 ixi IyI for x, y E , 
Re(j3(x, x)) > M3ixi2 + a11x112 for x E f?. 

Proof of the following representation theorem (or its equivalent) can be found in 
many places; see, for example, [24], [17, p. 322]. 

3. 1. THEOREM. Assume Vl, V2, V3. Then, there exists a closed densely 
defined linear operator A in 6' with the following additional properties: 

(1) if A E R and A < a + M3M72, then A is in the resolvent set of A and 

ii(A - A)-' 11 < 1/(a + M3M-2 - A); 

(2) 9Y(A) c X, 9Y(A) is dense (in the I I norm) in f, and if x E 
E [0, M3), A E (-oo, a + EM2 ], then 

{(A - A)-'x1 < IIXII(M3 _ E)-112(a + M3MA12 - A)-1/2 

(3) SY(x, y) = (Ax, y) for all x E 92(A), y E X; 
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(4) M31 Im((Ax, x))I < M2 Re((Ax - ax, x)) for x E 9(A); 
(5) x E 9(A) if and only if x E dS and there exists z E X such that a(x, y) = 

(z,y) for all y E X; 
(6) if w E R' and A E (-oo, a + M3M7 2), then there exists a unique x E g 

such that W(x, y) = (Ax + w, y) for all y E R; moreover, x = (A - A)'w. 

Observe that (1) and (4) of the above theorem imply that -A is the generator 
of an analytic semigroup [17, p. 492] and 

l(e-AtII < exp(-(a + M3MT'2)t) for t > 0. 

A can be considered as a generalized "elliptic" operator [21], [31]. In order to ap- 
proximate solutions of "elliptic" problems, one usually makes at least the following 
additional assumption: 

V4: Let 22ij, 2, .... be finite-dimensional subspaces of A, such that 

lim inf ly-z| =0 
n-oo zE2f., 

for all y in a dense (in the norm) subset of X. 

3.2. THEOREM. Assume Vl, V2, V3, V4. Choose any w E Z and A E 
(-oo, a + M3M72). Then, for each n > 1 there exists a unique xn E <n such that 

i((xn, Z) = (AXn + W, Z) for all z E En. 

Moreover, if x e 21 is such that j(x, y) = (Ax + w, y) for all y E X, then 

lim lxn - XI= 0 
n- oo 

This is the often used result of Lax, Milgram and Cea [7, p. 104], [8, p. 327], [24]. 
Note that very general elliptic problems can be formulated so that the assumptions 
Vi, V2, V3, V4 are satisfied-this includes problems in unbounded domains, very 
singular and degenerate problems; see, for example, [1], [6], [7], [21], [24], [26]. The 
following theorem shows that the convergence of approximations of solutions of 
the corresponding weakly nonlinear "parabolic" problem follows immediately from 
these assumptions and from Theorem 2.3. This result has, in effect, been obtained 
in [24] by a completely different proof. Many similar results have been obtained, for 
example [8], [9], [11], [12], [13], [16], [22], [28], under different conditions (typically, 
A is selfadjoint with compact resolvent, or simply A = -A in a bounded domain 
with nice boundary); however, in these works the emphasis is on different topics 
(attractors in [11], [12], nonlinearity in [12], [13], [24], convergence rates in [13], 
[16], [28]) or on different types of problems [8], [9], [22]. 

3.3. THEOREM. Assume Vl, V2, V3, V4. Suppose T E (0,oo), F: [0,T] x 
is continuous and that for some L E [0, cc) we have that 

JIF(t, x) - F(t, y) < Llx - yll for t E [0, T], x E Y, y e X. 

Choose any y E X. Then, for each n > 1 there exists a unique un E C'([0, T], I) 
such that for all z E En we have (un(0), z) = (y, z) and 

d (un(t),z) +ja(un(t),z) = (F(t,un(t)),z) fortE [O,T]. 



APPROXIMATIONS FOR WEAKLY NONLINEAR EVOLUTION EQUATIONS 477 

Moreover, 
lim sup IIu(t) - un(t)II = 0, n-oo O<t<T 

where u E C([O,T], X) satisfies (A is as in Theorem 3.1) 
t 

u(t) = e-Aty + e-A(t8)F(s, u(s)) ds for t E [0, T]. 

Proof. Let Xn- be equipped with the norm (inherent to X). Let Pn 
be the orthogonal (in X) projections of Z onto Xn and let Qn be the identity 
maps from Xn to X =_ . Hence Hi, H2, H3, H4, H6 are satisfied. 

If we apply Theorem 3.1 where both Z and 2 in Vi, V2, V3 are replaced by 
7`, and if we denote the corresponding linear operator by An, then (1) implies 

I exp(-Ant) 1 < exp(-(a + M3M7 2)t) for t > 0, n > 1, 

hence H5 is satisfied. If w E X, A E (-x, a + M3M72), and if x, xn are as in 
Theorem 3.2, then (6) of Theorem 3.1 implies that 

Xn = (An -A)-1Pnw= Qn(An -A)-1Pnw, x = (A-A)-1w, 

and hence Theorem 3.2 implies that H7 is satisfied. 
Therefore, the assumptions Hi through H7 are satisfied and hence Theorem 2.3 

and (3) of Theorem 3.1 imply the assertions of this theorem. O 

One has to make additional assumptions when studying the wave equation. The 
following assumption is, in effect, used in [31, pp. 427-430]. 

V5: Assume Vi, V2, V3 and that for some b E [0, x) we have that 

I Re(a(x, y) - 5(y, x))I < b(Ix12 + IIyII2) 

for all x, y in a dense (in the I I norm) subset of X. 
It is not hard to see that V5 implies (and is implied by) 

Ia(x, Y) - (y,x)I J 2bJIxIIyII for all x,y in 2. 

3.4. LEMMA. Assume Vi, V2, V3, V5 and let A be as given by Theorem 3.1. 
Let X = x Y; X is a Hilbert space with inner product 

({x, y}, {z, w}) = [x, z] + (y, w). 

Define B: 92J(B) -* X by 92J(B) = {{x, y} E Xlx E 92(A), y E 2}, 

B{x,y} = {-y,Ax} for {x,y} E?iY(B), 

and let c = (b + JaIM,)/(2M3'2), M = (max{1, M2 + IaIM12}/min{1, M3})1/2. 
Then, B is a closed, densely defined linear operator in X; moreover, if A E R 

and JAl > c, then -A2 < a + M3M7 2, A is in the resolvent set of B, and 

II(B - A)-m11 < M(IA -c)-m for m = 1, 2,3,... 

Furthermore, if {f, g} E X and {x, y} = (B - A)1 { f g), then 

x = (A + A2)-1(g-Af), y =-Ax-f. 

Proof. Let us first introduce a new inner product (, )new in X by 

({X, y}, {Z, W})new = a(x, Z) + a(z, X) - 2a(x, z) + 2(y, w) 
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Proof of Theorem 3.5. Let Xn = Jfn x Jn: Xn is a Hilbert space with inner 
product 

({x, y}, {z, w}) = [x, z] + (y, w). 

Let this also be the inner product on the Hilbert space X = g x 2. 
Let Pn be the orthogonal (in 2?) projection of 2 onto %. 
Let Pn' be the orthogonal (in 2) projection of X' onto ?n. 
Define Pn e R(X,Xn) by Pn{x,y} = {Pnx,P,ny} and note that Pn is the 

orthogonal projection of X onto Xn. 
Let Qn be the identity map from Xn to X. 
Let B, c, M be as in Lemma 3.4 and note that B is densely defined. 
Let us replace both 1 and Y by Yn in V1, V2, V3, V5 (the same a, b, M1, M2, 

M3 will do). Denote by An the corresponding operator given by Theorem 3.1 and 
let Bn be the corresponding operator given in Lemma 3.4. If m > 1, A < -c, then 

II(Bn - A)-ml < M(-c - A)-m, hence, 11 exp(-Bnt)ll < Mect for t > 0. Choose 

A < -c, {f, g} E X; let 

{Xn,Yn} = (Bn-A)'Pn{f,g}, {x,y} = (B-A)-,{f,g} 

and note 

Ixn-X = (An + A2 nn1(P g -APnf)-(A + A2)'(g - 

(1) - (An + A2)1P,ng n (A + A2)1g1 

(2) + IAIj(An + A2>'Pgf-(A + n2)'fj 

(3) + JAIj(An + A2<'(P,f - Pn f)n 

-lYn-Yll = IA(X -Xn) + f - Pn'ff < Ml A(x - Xn)I + MlIf -Pnf fl 

The terms (1) and (2) converge to 0 as n -- oo by Theorem 3.2 (the same argument 
as in the proof of Theorem 3.3). The assertion (2) of Theorem 3.1 implies that there 
exists c1 E (0, oo) which depends only on A, a, M1, M3 such that 

t(An + A2)'-(P f - Pf)I ? fP 'f -Pn"ffCl < (IlInf - ff1 + lIf -Pn"f C 

< 211Pnf - f lic < 2jPnf - fIM1cl. 

Assumption V4 implies limn,o0 lPnf - ft = 0, and hence (3) converges to 0 as 
n -* oo. Therefore, 

lim |xn- xi = O, lim ||Yn -Yll = O- 
n--+oo n-- oo 

Therefore, Hi through H7 are satisfied (with Bn, B in place of An, A). Theorem 
2.3 implies that there exist unique {un, vn } E C' ([0, T], Xn) such that 

u' (t)-vn(t)=O for tE[O, TI, 
v$ (t) +Anu (t) = Pn'F(t,un(t),vn(t)) forte [O,T], 

Un(0) = PnXO, vn(O) = PnYO 

Moreover, 

(4) lim sup (lu(t)-un(t)j + ||v(t)-vn(t)ll) = O, 
nf+oo O<t<T 
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Choose any xo E X. Then, for each n > 1 there exists a unique un E C ([0, T] 7 n) 
such that for all z E 7 we have (Un(0), z) = (xo, z) and 

d 
dt (Un(t),z) + (Sun(t),z) = (F(t, Un(t)), z) for t E [O, T]. 

Moreover, there exists u E C([O, T], k) such that 

lim sup IIU(t) - Un(t) II = 0; 
n-oo O<t<T 

furthermore, this u is the unique element of C([O, T], X) which satisfies 
t 

u(t) = e -AtxO + e-A(t- )F(s, u(s)) ds for t E [O, T]. 

This follows immediately from Theorem 3.3 and the preceding discussion. A 
similar result can be found in [24]. Observe how easily the assumptions can be 
verified. Translation of Theorem 3.2 is left to the reader; or, see [24]. 

The following hypothesis is obviously the appropriate modification of V5: 
S4: Assume S1, S2, S3 and that there exists b E [0, x) such that 

I Re((Sx, y) - (x, Sy))I < b(lxl2 + Ilyl12) for x, y in 92(S). 

Recall that if x E k(S) then lxl is evaluated as follows: 

IxI2 = Re((Sx, x)) + (1 + r)IIxII2 for x E 9(S). 

In the following theorem an adaptation of Theorem 3.5 is presented; the assump- 
tion on the nonlinearity of F looks complicated on account of the fact that F is 
defined only on [0, T] x 9(S) x 9(S)-other formulations are possible. 

4.2. THEOREM. Assume Si, S2, S3, S4. Suppose also that T E (0,x) and 
that F: [O, T] x k(S) x k(S) - Z is such that for some L E [O, x) we have 

IIF(t, x, y) - F(t, z, w)II < L(Ix - zl + IIY - wIl) for t E [O, T], x, y, z, w E 9(S), 

and that for each t E [0, T], I E (0, X), p E (0, X) there exists 6 E (0, oc) such 
that IIF(t,x,y) - F(s,x,y)II < E whenever s E [O,T], It - sl < 6, x, y E 92r(S), 
lxI + IIYl < p. Choose any xo E 1, Yo E X 

Then, for each n > 1 there exists a unique un E C2([0,T], n) such that for all 
z E En we have 

(u" (t), Z) + (Su (t), z) = (F(t, Un(t),u' (t)), z) for t E [O, T], 

(un(O),z) = (yo,z), [Un(O),z] = [xo,z] 

Moreover, there exists u E C([O, T], 2 ) nl ( [O, T], X) such that 

lim sup (Iu(t) -Un (t) I + IIu'(t) -Un (t)I 1) = 0, 
n-oo O<t<T 

u(0) = Xo, U'(O) = yo. 

Proof. The Lipschitz condition and the fact that 9 (S) is dense in both X and 
Z allows us to define, by continuity, the extension of F on [0, T] x A x X. One 
can easily see that the extension is a continuous mapping of [0, T] x X x X into 
X, and that it satisfies the Lipschitz condition; hence, Theorem 3.5 applies. O 
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where {u, v} E C([O, T], X) satisfies 

{u(t), v(t)} = e-Bt{xo, yo} + e-B(t8){0, F(s, u(s), v(s))} ds for t e [0, T]. 

Since 

un (t) = un (0) + vn (s) ds, 

the limit relation (4) implies 
t 

u(t) = u(O) + Jv(s) ds, 

and therefore u E C1([0,T],). 
To see that u is also a weak solution, pick z E X and note that 

st 

(u(t)U P(z)-(u/(O) Pnz) = j ((F(s, uZ(s), uk(s)), P?z)-j(un(s), Pnz)) ds 

for t E [0, T], n > 1. Using (4) again completes the proof. D 

4. Spectral Galerkin Approximations. Throughout this section it will be 
assumed that 

Si: X is a complex Hilbert space with inner product (,.) and the corresponding 
norm 11 11 

S2: Pn E X? for n > 1; let 7n denote the collection of all linear combinations of 

P1,i , pn and assume that U 1 2/4 is dense in X. 
S3: S: ?ZJ(S)= U?1 l X 2 is a linear operator such that for some r E R and 

some -y E (0, oo) we have that 

-yj Im((Sx, x))I < Re((Sx, x)) + rllxII2 for all x E 92~(S). 

It is well known [24], [26], [17, p. 325] that there exist a subspace 1 of X, an 
inner product [., ] on 1 and a sesquilinear form a on 1 such that the assumptions 
Vi, V2, V3 of Section 2 are satisfied and that also the following holds: 

(a) 92(S) is dense (in the I I norm) subspace of 2; 

(b) [x, y] = ((Sx, y) + (x, Sy)) /2 + (1 + r) (x, y) for x, y in 2 (S); 
(c) j(x, y) = (Sx, y) for x, y in 92r(S). 

The operator A given by Theorem 3.1 is an extension of S and is called the 
Friedrichs extension of S [17, p. 325]. Observe that (a) implies V4. 

This enables us to simply replace assumptions Vi, V2, V3, V4 in Theorems 3.2, 
3.3, 3.5 by assumptions S1, S2, S3. While it is usually not difficult in applications 
to verify Vi, V2, V3, V4, it is clear that verification of S1, S2, S3 is completely 
elementary (with the possible exception of S2). The price one has to pay for this 
simplification is: Pn E 92(S) C ?ZJ(A), 2 C 2g+. Thus, this approach is 
not suitable for the usual finite element approximations; however, it is ideal when 
polynomial (or other smooth functions) are used as basis functions. 

4.1. THEOREM. Assume S1, S2, S3. Suppose T E (0,x), F: [0,T] x' - 

is continuous and that for some L E [0, x) we have that 

IIF(t, x) - F(t, y) 11 < Llx -yll for t E [0, T], x E , y E df. 
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Choose any xo E Z. Then, for each n > 1 there exists a unique un E Cl ([0, T], n) 
such that for all z E % we have (u (0), z) = (xo, z) and 

d 
dt (Un(t),z) + (SUn(t),z) = (F(t,Un(t)),z) forte [O,T]. 

Moreover, there exists u E C([O, T], 9) such that 

lim sup IIu(t) - un(t)II = 0; 
noo O<t<T 

furthermore, this u is the unique element of C([O, T], 9) which satisfies 
t 

u(t) = e-At xO + e-A(t- )F(s, u(s)) ds for t E [0, T]. 

This follows immediately from Theorem 3.3 and the preceding discussion. A 
similar result can be found in [24]. Observe how easily the assumptions can be 
verified. Translation of Theorem 3.2 is left to the reader; or, see [24]. 

The following hypothesis is obviously the appropriate modification of V5: 
S4: Assume Si, S2, S3 and that there exists b E [0, cx) such that 

I Re((Sx, y) - (x, Sy))l < b(lxl2 + llyll2) for x, y in 92(S). 

Recall that if x E k(S) then lxl is evaluated as follows: 

Ix12 = Re((Sx, x)) + (1 + r)11xX12 for x E 9J(S). 

In the following theorem an adaptation of Theorem 3.5 is presented; the assump- 
tion on the nonlinearity of F looks complicated on account of the fact that F is 
defined only on [0, T] x 9(S) x k(S) -other formulations are possible. 

4.2. THEOREM. Assume Si, S2, S3, S4. Suppose also that T E (0,x) and 
that F: [0, T] x 9(S) x 9(S) -+ X is such that for some L E [0, cx) we have 

IIF(t, x, y) - F(t, z, w)II < L(Ix - zl + IIY - wIl) for t E [0, T], x, y, z, w E 9(S), 

and that for each t E [0, T], I E (0, X), p E (0, X) there exists 6 E (0, oc) such 
that IIF(t, x, y) - F(s, x, y)11 < E whenever s E [O, T], It - S1 < 6, x, y E 9(S), 
lxI + IlYl < p. Choose any xo E 1, Yo E t. 

Then, for each n > 1 there exists a unique un E C2([0, T], 7n) such that for all 
z E En we have 

(u" (t), Z) + (Sun(t), z) = (F(t, un(t),u U(t)), z) for t E [0, T], 

(un (?), z) = (yo, z), [Un (0), z] = [xo, z] 

Moreover, there exists u E C([O, T],XA) nlC ([0, T], ) such that 

lim sup (Iu(t) - Un(t)I + IIu'(t) - Un(t) I) = 0, 
noo O<t<T 

u(0) = xo, u'(0) = YO. 

Proof. The Lipschitz condition and the fact that 9(S) is dense in both X and 
Y allows us to define, by continuity, the extension of F on [0, T] x x x?'. One 
can easily see that the extension is a continuous mapping of [0, T] x A x X into 
X, and that it satisfies the Lipschitz condition; hence, Theorem 3.5 applies. O 



482 MILAN MIKLAV6I3 

Verification of the hypotheses is completely elementary, except for the following 
possible complications: it is required that xo E g and that one should be able to 
calculate [xo, z]. Determining whether or not xo belongs to g can be relatively 
difficult. The problems disappear when xo E 9(S) (the formula for [-, ] is given at 
the beginning of this section). In particular, this happens if the original problem is 
formulated so that xo = 0 (thus un (0) = 0). For xo in X, one may calculate [x0, z] 
as follows. It can be shown (9Y(A) = .2r(A*) when Sl, S2, S3, S4 hold) that there 
exists Si: O(S) -* X such that 

(Sx,y) = (x,Siy) for all x,y in 9(S), 

and in applications S1 can usually be determined by integration by parts. This 
implies that if xo E X, z E 9(S), then 

[xo, z] = (xo, (1/2)(Sz + Siz) + (1 + r)z). 

In a subsequent publication we show that, if the assumptions on F are strengthened 
slightly, then one can allow any xo E X, and in this case un (0) can be determined 
simply by: (un (0), z) = (xo, z) for all z E En . 

We now give an application of Theorem 4.2 to the following problem: 

Utt = (plUx)x + p2Ux + p3u + sin lutl for x E R, t > 0, 

u(x, 0)= 0, ut(x, 0) = vo(x) for x E R, 

where vo E L2 (R) and pi = pi (x) satisfy 

(1) pi E C'(R), pi(x) E [0,oo) for x E R, p' is bounded; 
(2) P2 is a complex-valued measurable function such that for some c < xc 

Jp2(x)f2 < cp(x) for x E R; 

(3) p3 E L2 (R) is real-valued and bounded from above. 

Observe that Pi can vanish on an interval, p3 can be singular, Pi and P2 may 
not be bounded, vo does not have to be smooth. The problem looks abstruse, 
and it is not at all clear that it makes sense. However, if one chooses the basis 
functions to be Pn(x) = xn-l exp(-x2), n > 1, then it is clear that the Galerkin 
approximations are computable. An elementary calculation will show that the 
assumptions of Theorem 4.2 can be satisfied, and this will give us that the Galerkin 
approximations converge to a generalized solution. Clearly, Sl, S2 are satisfied, 
with X = L2(R). Let 9(S) be as given in S3 and observe that u E 9(S) if and 
only if u(x) = q(x) exp(-x2) for some polynomial q. Define 

Su = -(PlUx)x - P3U for u E 9(S). 

Since for u E O(S) we have 

(Su, u) = P(x) Iux(x) 12 dx-f p3(X)IU(X)i2 dx > -r Iull 2, 

where r = supT p3(x), we see that S3 holds. Since (Su, v) = (u, Sv) for u, v in 

?(S), we have S4. The mapping F: [0, cc) x O(S) x 9(S) - should be given 
by 

F(t, u, v) = P2Ux + sin lvl. 
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Observe that for u, v, f, g in s(S) we have 

IIF(t,u,v) - F(t,f,g)JI ? llP2(u - f.)Il + liv - 911, 

and since 

llP2(Ux fx)112 < cf P(X)lUX(X) -fx(x)l2 dx 
-00 

< C(S(U - f), u - f) + crllu-f112 <clu-fl2, 

we see that all assumptions of Theorem 4.2 are satisfied (for any T E (0, xc)). 
It is clear that the nonlinearity of F does not have to be "local"-singular non- 

linear integral operators could be added to the equation. Much worse singularities 
could be allowed if weighted L2(R) would be used [6]. Theorem 4.2 obviously 
applies also to systems. 

An L2 space is often the obvious appropriate choice for *; however, for "nice" 
problems one can often choose a Sobolev space for X, and thus approximations 
that converge in the Sobolev space are obtained. [5] may be helpful for verifying 
S2 in such cases. 
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